
Fusebox 5.5

Release Notes

Saturday, December 1, 2007

Fusebox 5.5 Documentation

Page 1 of 18

Table of Contents
Overview 4

Theme: Simplification 4
Theme: Extensibility 4

Making XML Optional 4
The simplest Fusebox application 5
FUSEBOX_PARAMETERS and omitting fusebox.xml 5
Omitting circuit.xml 6
Implicitly locating a circuit 6
CFCs as Circuits 7
Directories as Circuits 8

CFML Templates as Fuseactions 8

CFCs as Fuseactions 8

Dynamic Do 9
Handling Content Variables 9

Model-View-Controller w/out XML 10
prefusaction / postfuseaction 11
Thread safety and CFC instantiation 11

The Event Object 11
XFA Parameters 12
myFusebox.relocate() 13

Application.cfc Support 13
Event Handler Methods 14
onApplicationStart() and onFuseboxApplicationStart() 14
onRequest() and remote CFC calls 14

Additional Changes 15
Enhancements 15

Fusebox 5.5 Documentation

Page 2 of 18

Assertions 15

conditionalParse 15

contentVariable append 15

Debug Trace 15

errortemplates 15

myFusebox.showDebug 16

myFusebox.getApplicationData() 16

myFusebox.getOriginalCircuit() / myFusebox.getOriginalFuseaction() 16

myFusebox.variables() 16

self parameter 16

SES URL processing 16

Skeleton application reorganized 17

Bugs Fixed 17
Known Issues 18

Fusebox 5.5 Documentation

Page 3 of 18

Overview
This document describes the new features in Fusebox 5.5 and will ultimately be integrated into
the main Fusebox documentation.

There are two primary themes to Fusebox 5.5:

1. Simplify. Remove barriers. Make it easier for newbies. Make building applications faster
by favoring convention over configuration.

2. Extend through extensibility. Provide new functionality outside the core. Add plugins,
lexicons, even standardized circuits.

In addition, backward compatibility is of paramount importance so all Fusebox 4.x and Fusebox
5.x applications should run, unchanged, on Fusebox 5.5. In theory, you can just unzip the new
core files over the top of your existing core files and everything should just work.

Theme: Simplification
According to the survey conducted early in 2007 by TeraTech, Inc., the main complaint about
Fusebox 4.x through Fusebox 5.1 is the use of XML to configure the application and to specify
the flow of control. Whether real or merely perceived, the use of XML appears to be the single
largest barrier to adoption of Fusebox. Accordingly, the primary focus of this theme for Fusebox
5.5 is to make the XML files optional for most use cases by adopting a set of reasonable defaults
and conventions. The Alpha allows you to build Fusebox applications without using XML, as
long as you follow a number of conventions in terms of file system layout and naming.

Theme: Extensibility
Fusebox 4.0 introduced a number of extension points into the framework that allow users to ex-
tend the behavior of the core files without needing to change the core files. Subsequent releases
have continued on this path with Fusebox 5.0 introducing lexicons as a way to extend the lan-
guage of Fusebox. Fusebox 5.5 now offers a standard set of extensions as a separate download
that includes: lexicons for ColdFusion-like verbs, ColdSpring, ORMs (Object Relational Map-
pings) for both Transfer and Reactor, and a more comprehensive lexicon for Reactor; plugins for
assertions; scaffolding for quickly generating basic data management applications.

Making XML Optional
Fusebox 4.x through Fusebox 5.x use XML for two purposes:

1. fusebox.xml – for configuring your application: setting application parameters and de-
claring classes, plugins and global fuseactions;

2. circuit.xml – for specifying the logical flow of control for a given fuseaction.

Fusebox 5.5 Documentation

Page 4 of 18

Within these XML files, many of the settings and/or attributes are already optional, with docu-
mented default values. In order to make the XML files themselves optional, another mechanism
must be provided to either override the defaults or specify values that cannot be defaulted. For
example, the default value for the fuseactionVariable is "fuseaction" but the default
value for the defaultFuseaction is "". Clearly the latter has to be overridden for all appli-
cations.

The simplest Fusebox application
Here is the classic Hello World! application in Fusebox 5.5 in the simplest possible form:
index.cfm:

 <cfapplication name="helloworld" />
 <cfset FUSEBOX_PARAMETERS.defaultFuseaction = "main.welcome" />
 <cfset FUSEBOX_PARAMETERS.allowImplicitFusebox = true />
 <cfinclude template= "/fusebox5/fusebox5.cfm" />

main/welcome.cfm:

 Hello World!

This simple, two file application displays Hello World! with no XML. The circuit main is
resolved to the directory main/ and the fuseaction welcome is resolved to the fuse
welcome.cfm.

The following sections explain in more detail how you can build Fusebox applications without
XML and what options you have for structuring your code.

FUSEBOX_PARAMETERS and omitting fusebox.xml
Fusebox 5.5 introduces a new top-level variable called FUSEBOX_PARAMETERS which is a struc-
ture that you can use to specify parameters that would normally be set in the <parameters>
block inside fusebox.xml. You can use this in your index.cfm file (or Application.cfc -
see below) to specify parameters, prior to including the core file entry point:
<cfset FUSEBOX_PARAMETERS.defaultFuseaction = "controller.welcome" />
<cfset FUSEBOX_PARAMETERS.debug = true />

These values will override any matching <parameter> settings in fusebox.xml whenever the
Fusebox application is reloaded.

Fusebox 5.5 also introduces a new parameter setting, allowImplicitFusebox, which allows
the fusebox.xml file to be omitted. Naturally, this has to be set in index.cfm (or
Application.cfc):
<cfset FUSEBOX_PARAMETERS.allowImplicitFusebox = true />

When this is specified as true, the fusebox.xml file may be omitted and Fusebox uses default
values for all settings that are not explicitly specified in the FUSEBOX_PARAMETERS structure in
index.cfm (or Application.cfc).

Fusebox 5.5 Documentation

Page 5 of 18

If you omit the fusebox.xml file, the only settings that will be active will be those specified in
the FUSEBOX_PARAMETERS structure and any standard Fusebox defaults for settings not speci-
fied in that structure.

Omitting circuit.xml
Fusebox 5.1 introduced the parameter setting, allowImplicitCircuits, so that you could
omit the circuit.xml file for a circuit that is used only as a container for fuses that are in-
cluded by other circuits (via the <include> verb with the circuit= attribute). In such a situa-
tion, the circuit.xml file, if present, would be “empty”, containing only <circuit/>, possi-
bly with an access= attribute.

Fusebox 5.5 extends the meaning of allowImplicitCircuits to also indicate that circuit
declarations can be omitted completely. If you omit fusebox.xml, you have no circuit declara-
tions and so allowImplicitCircuits is automatically set to true. If fusebox.xml is present
but you wish to omit the circuit declarations, you must set allowImplicitCircuits to true.

Implicitly locating a circuit
If you attempt to execute a fuseaction in a circuit that is not declared, Fusebox 5.5 attempts to
deduce the location and form of the circuit using a series of conventions.

Fusebox 5.5 first attempts to find a regular circuit.xml (or circuit.xml.cfm) file by look-
ing in the following locations relative to the application root (assuming a fuseaction of
alias.action):

● controller/alias/

● model/alias/

● view/alias/

● alias/controller/

● alias/model/

● alias/view/

● alias/

If a circuit file is found, it is treated as a regular Fusebox circuit that simply was not declared in
fusebox.xml. Otherwise, Fusebox attempts to find a CFC that represents the circuit by looking
for:

● controller/alias.cfc [access="public"]

● model/alias.cfc [access="internal"]

● view/alias.cfc [access="internal"]

If such a CFC is found, it is treated as a circuit with the methods representing fuseactions – see
below. Otherwise, Fusebox looks for matching directories:

Fusebox 5.5 Documentation

Page 6 of 18

● controller/alias/ [access="public"]

● model/alias/ [access="internal"]

● view/alias/ [access="internal"]

● alias/ [access="public"]

If such a directory is found, it is treated as a circuit with the files within that directory represent-
ing fuseactions – see below. Otherwise, Fusebox throws an exception that the requested circuit is
undefined.

Whilst this may seem like a complicated set of rules, it is intended to support the most common
conventions used today in Fusebox applications (and, in fact, in several other frameworks). The
intent is that Fusebox should be intuitive to use without having to think about the rules: the
common conventions should “just work”.

The first searches – for circuit.xml files – are intended to support common Fusebox conven-
tions in the absence of a fusebox.xml file. The remaining searches are intended to support a
more object-oriented approach (CFCs-as-circuits) or a simple procedural approach (directories-
as-circuits). This is in line with Fusebox's goals of supporting a wide range of programming
styles while not getting in the way of the programmer.

CFCs as Circuits
If Fusebox identifies a ColdFusion Component as a circuit, it expects to be able to call methods
on that CFC corresponding to fuseactions within the specified circuit. If a request is made for
alias.action and Fusebox determines that alias.cfc is the specified circuit, then the following
method should exist in that CFC:
<cffunction name="action">
 <cfargument name="myFusebox" />
 <cfargument name="event" />
 ... perform the fuseaction ...
</cffunction>

The method may execute other fuseactions – using the dynamic “do” operation on myFusebox
(see below) – and may store result data into the event object (which is an encapsulation of the
Fusebox attributes scope).

If a method named prefuseaction is present, it is called before each action method. If a
method named postfuseaction is present, it is called after each action method.
prefuseaction() and postfuseaction() methods share the same variables scope as
the action method.

Results may be passed back via two mechanisms:

● Using myFusebox.variables().key = value to assign directly into Fusebox's
common variables scope – consider this to be the “old-school”, procedural approach.

Fusebox 5.5 Documentation

Page 7 of 18

● Using event.setValue("key",value) to assign into Fusebox's attributes scope,
which is wrapped in the event object – consider this to be the more modern, object-
oriented approach.

Directories as Circuits
If Fusebox identifies a directory as a circuit, it expects to find individual files within that direc-
tory corresponding to fuseactions within the specified circuit. If a request is made for alias.action
and Fusebox determines that alias/ is the specified circuit, then one of the following files
should exist in that directory:

● action.xml

● action.cfm

● action.cfc

The behavior in each of these scenarios is described in the following sections.

CFML Templates as Fuseactions
A request for alias.action is resolved to the file action.cfm in the directory alias/. The be-
havior is as-if the following code existed in a circuit.xml file:

<fuseaction name="action">
 <include template="action" />
</fuseaction>

In other words, the action.cfm file is included as a regular fuse file.

If a file named prefuseaction.cfm is present in the same directory, it is included before the
action.cfm file. If a file named postfuseaction.cfm is present in the same directory, it is
included after the action.cfm file.

CFCs as Fuseactions
A request for alias.action is resolved to the file action.cfc in the directory alias/. Fusebox
treats the ColdFusion Component as a “command” object and the following method should exist
in that CFC:
<cffunction name="do">
 <cfargument name="myFusebox" />
 <cfargument name="event" />
 ... perform the fuseaction ...
</cffunction>

The method may execute other fuseactions – using the dynamic “do” operation on myFusebox
(see below) – and may store result data into the event object (which is an encapsulation of the
Fusebox attributes scope).

If a method named prefuseaction is present, it is called before the do() method. If a method
named postfuseaction is present, it is called after the do method. prefuseaction() and
postfuseaction() methods share the same variables scope as the do() method.

Fusebox 5.5 Documentation

Page 8 of 18

Dynamic Do
Fusebox 5.5 adds a new method to the myFusebox object:

 string do(action : string,
 contentvariable : string = "",
 append : boolean = false,
 returnOutput : boolean = false);

This allows code to execute an arbitrary fuseaction at runtime. The specified fuseaction may ei-
ther be fully qualified (alias.action) or just an action within the currently executing circuit. For
example:
<invoke object="myFusebox" methodcall="do('main.welcome')" />

This is equivalent to:
<do action="main.welcome" />

except that you could specify a dynamic value instead of 'main.welcome'. If you are already
executing a fuseaction in the circuit main, this is also equivalent to either of the following:
<invoke object="myFusebox" methodcall="do('welcome')" />

<do action="welcome" />

A dynamic “do” operation is still compiled down to straight-line CFML in the parsed/ direc-
tory, just like a regular fuseaction request. Whereas regular fuseaction requests are compiled
down to files called alias.action.cfm which implement complete requests, a dynamic “do”
is compiled down to a file called do.alias.action.cfm which implements only part of a re-
quest.

Handling Content Variables
If you specify contentvariable= and specify a variable name, do() will capture any gener-
ated output and store it into that named variable in the top-level variables scope. For example:
 <set value="#myFusebox.do(action='welcome',
 contentvariable="body")#" />

is equivalent to:
 <do action="welcome" contentvariable="body" />

Only simple variable names may be used in this context. If you use a dotted name (i.e., qualified
with a scope or struct name), it will behave like:
 variables["dotted.name"] = content

rather than:

 variables.dotted.name = content

If you specify a content variable, you may optionally specify that the content be appended to the
variable, using append=true, e.g.,

Fusebox 5.5 Documentation

Page 9 of 18

 <set value="#myFusebox.do(action='welcome',
 contentvariable="body",
 append=true)#" />

is equivalent to:
 <do action="welcome" contentvariable="body" append="true" />

The append= attribute has been added since the Public Beta.

If you need to store content in a struct variable or scoped variable, you need to use the
returnOutput argument instead.

If you specify returnOutput=true, do() will return any generated output as a string (and
will not output anything). This is the equivalent of using a content variable. For example:
 <set name="content.body"
 value="#myFusebox.do(action='welcome',
 returnOutput=true)#" />

is equivalent to:
 <do action="welcome" contentvariable="content.body" />

Model-View-Controller w/out XML
Let's look at a simple MVC Fusebox 5.5 application that uses a CFC for the controller:
index.cfm:
 <cfapplication name="helloworld" />
 <cfset FUSEBOX_PARAMETERS.defaultFuseaction = "main.welcome" />
 <cfset FUSEBOX_PARAMETERS.allowImplicitFusebox = true />
 <cfinclude template= "/fusebox5/fusebox5.cfm" />

controller/main.cfc:
 <cfcomponent>
 <cffunction name="welcome">
 <cfargument name="myFusebox" />
 <cfset myFusebox.do("dsp.welcome") />
 </cffunction>
 </cfcomponent>

view/dsp/welcome.cfm:

 Hello World!

In this example, we are taking advantage of the Fusebox 5.5 convention that searches for circuits
within controller/, model/ and view/ directories, as well as the convention that allows a
CFC to be treated as a circuit. The main.welcome fuseaction is resolved to the welcome()
method in the main.cfc component (circuit) in the controller/ directory. That fuseaction
(method) uses the new dynamic “do” operation to execute the dsp.welcome fuseaction. The
dsp.welcome fuseaction is resolved to the welcome.cfm fuse in the dsp circuit in the view/
directory.

Fusebox 5.5 Documentation

Page 10 of 18

prefusaction / postfuseaction
A circuit CFC may contain methods called prefuseaction() and/or postfuseaction()
which are called automatically by the framework, just as <prefuseaction> and
<postfuseaction> works in a circuit.xml file. This can used to handle automatic layouts,
security etc, e.g.,
controller/main.cfc:
 <cfcomponent>
 <cffunction name="postfuseaction">
 <cfset myFusebox.do("lay.main") />
 </cffunction>
 <cffunction name="welcome">
 <cfargument name="myFusebox" />
 <cfset myFusebox.do("dsp.welcome","body") />
 </cffunction>
 </cfcomponent>

In this example, the controller.welcome fuseaction executes the dsp.welcome fuseaction
and captures its output into the (top-level) variable called body. The postfuseaction()
method will be executed automatically which executes the lay.main fuseaction (which will
wrap #body# in a layout).

Thread safety and CFC instantiation
Fusebox 5.5 instantiates a circuit CFC on each request so you do not have to worry about thread
safety and this also discourages you from putting complex logic in your circuit CFC (since it
cannot have state). Your circuit CFCs should be very simple, just providing simple flow of con-
trol logic that interacts with the underlying business model and selecting display fuseactions.
Your business model service layer objects can be stored in the Fusebox application data and ac-
cessed via the getApplicationData() method on the myFusebox object (a new method in
Fusebox 5.5).

To clarify, Fusebox 5.5 instantiates a single instance of each requested circuit CFC per-request
and reuses it during that request. This means that the prefuseaction() and
postfuseaction() and regular fuseaction methods can all communicate using the CFC's
variables scope. In particular, if a single request causes multiple methods of the same circuit
CFC to be executed, those methods will also all share a single instance.

The Event Object
Fusebox 5.1 introduced the event object as an encapsulation for the attributes scope, mak-
ing it cleaner to refer to within object-oriented Fusebox code. Fusebox 5.5 adds the XFA pseudo-
scope structure to the event object so that exit fuseactions can be manipulated more easily in
object-oriented Fusebox applications. This adds one new method with the following behaviors:

Fusebox 5.5 Documentation

Page 11 of 18

string xfa(name : string);
string xfa(name : string, value : string);

The first form simply returns the specified XFA value. The second form sets the named XFA to
the specified value (but see also XFA Parameters below). If the value is not a fully-qualified
fuseaction, the current circuit name is used to create a fully-qualified fuseaction. For example:

controller/main.cfc:
 <cfcomponent>
 <cffunction name="welcome">
 <cfargument name="myFusebox" />
 <cfargument name="event" />
 <cfset event.xfa("home","welcome") />
 <cfset myFusebox.do("dsp.welcome") />
 </cffunction>
 </cfcomponent>

view/dsp/welcome.cfm:

 <cfoutput>
 <p>Hello World!</p>
 Go home!
 </cfoutput>

In this example, the main.welcome fuseaction (method) sets the home XFA to welcome (which
is actually main.welcome since the currently executing fuseaction is in the main circuit). The
dsp.welcome fuseaction references that XFA (and the built-in “myself” value). Note that XFAs
set inside the event object are still directly accessible in the variables scope in a fuse.

XFA Parameters
The <xfa> verb supports nested <parameter> tags to allow you to specify URL parameters
that are handled by the SES URL generation code (if you set the SES URL parameters queryS-
tringStart, queryStringSeparator and queryStringEqual in fusebox.xml or the
FUSEBOX_PARAMETERS structure). Support for this is provided through the xfa() method by
allowing an arbitrary number of additional argument pairs when you set an XFA value. For ex-
ample:
 <cfset event.xfa("next","main.home","message","Thank you!") />

This sets the XFA next to main.home and also adds the message URL parameter with the value
Thank you! according to the settings of the SES URL parameters. With the standard settings, you
would get:
 main.home&message=Thank%20you!

With SES URL settings using forward slashes, you would get:
 main.home/message/Thank%20you!

Fusebox 5.5 Documentation

Page 12 of 18

myFusebox.relocate()
In keeping with the changes to the event object to support XFAs, myFusebox now has a
relocate() method that is identical to the <relocate> verb except that JavaScript redirection
is not supported. The method has the following signature:
 void relocate(url : string = "", xfa : string = "",
 addtoken : boolean = false,
 type : string = "client");

You can specify either a full URL using the url argument or an XFA name using the xfa argu-
ment, just like the <relocate> verb, therefore you must use named arguments to specify xfa,
addtoken or type. A common usage would be something like this:
 event.xfa("next","task.show","taskId",id);
 myFusebox.relocate(xfa="next");

This sets an XFA, next, with a URL parameter, taskId, and then relocates to it.

Application.cfc Support
Fusebox has always supported Application.cfm and index.cfm as the standard entry points
for the framework:

Application.cfm (provided by the skeleton application):

 <cfsilent>
 <cfif right(cgi.script_name, len("index.cfm")) neq "index.cfm"
 and right(cgi.script_name, 3) neq "cfc">
 <cflocation url="index.cfm" addtoken="no" />
 </cfif>
 <!--- there must be no newline after the closing cfsilent tag
 if you want all leading whitespace suppressed --->
 </cfsilent>

index.cfm:

 <cfapplication name="someApplicationName" />
 <!--- optionally set FUSEBOX_* variables --->
 <cfinclude template="/fusebox5/fusebox5.cfm" />

Fusebox 5.5 introduces support for Application.cfc:

Application.cfc:
 <cfcomponent extends="fusebox5.Application" output="false">
 <cfset this.name = "someApplicationName" />
 <!--- optionally set FUSEBOX_* variables --->
 </cfcomponent>

index.cfm:
 <!--- empty file --->

Fusebox 5.5 Documentation

Page 13 of 18

The index.cfm file has to be present but is not actually used so it should be empty.

Event Handler Methods
If you override any of the event handler methods in your Application.cfc, you must invoke
the super method at the beginning of your method code, otherwise the base Fusebox
Application.cfc methods will not be executed and Fusebox will not work correctly.

For example, onRequestStart():

<cffunction name="onRequestStart">
 <cfargument name="targetPage" />

 <cfset super.onRequestStart(arguments.targetPage) />

 <cfset self = myFusebox.getSelf() />
 <cfset myself = myFusebox.getMyself() />

</cffunction>

This example shows how to do something in Application.cfc that would previously have
been done in fusebox.init.cfm or the <preprocess> global fuseaction (and which can still
be done that way in Fusebox 5.5, unless you omit fusebox.xml). The self and myself vari-
ables are set into the Application component's variables scope, which is also the top-level
Fusebox variables scope (because onRequest() is used to process the actual request). Note
that myFusebox is also available in the Application component's variables scope.

onApplicationStart() and onFuseboxApplicationStart()
You can use onApplicationStart() to set ColdFusion application scope variables but
remember that method is only called (by ColdFusion) when the ColdFusion application starts up
– which is not the same as the Fusebox application since Fusebox applications can be restarted
programmatically at any time, independent of the ColdFusion application. To execute code when
the Fusebox application is loaded, you can use the onFuseboxApplicationStart() method
(or the previously introduced fusebox.appinit.cfm file or the <appinit> global fuseac-
tion).

onRequest() and remote CFC calls
Note also that Fusebox's Application.cfc uses onRequest() to handle the underlying re-
quest. This means that the old code to trap requests to files other than index.cfm is no longer
necessary. A request to any .cfm file is automatically routed through the framework. Also note
that requests for CFCs (web services, Flex Remoting, AJAX etc) are routed through the frame-
work up to, but not including, onRequest().

This means that such calls can rely on application, session and request variables set in
Application.cfc handlers, as well as any processing done in fusebox.init.cfm if it is
present, thus sharing context between Fusebox applications and remote CFC invocations.

Fusebox 5.5 Documentation

Page 14 of 18

Additional Changes
This section of the Release Notes provides an outline of other minor enhancements in Fusebox
5.5 as well as bugs fixed since Fusebox 5.1.

Enhancements
This section lists minor enhancements in Fusebox 5.5 with ticket numbers where appropriate.

Assertions
Ticket #25. The assertions plugin is the official solution to this problem - and it is more pow-
erful than the original Fusebox 4.1 approach.

See the comments in extensions/plugins/assertions.cfm for usage details.

conditionalParse
Ticket #75. Fusebox 4.1 supported a conditionalParse parameter in fusebox.xml that pre-
vented parsed files being recreated if they would not have changed. This parameter was ignored
in Fusebox 5.0 and 5.1. Fusebox 5.5 recognizes this parameter but treats it slightly differently to
how Fusebox 4.1 treated it. In Fusebox 5.5, the parse still occurs (except in production mode) but
the parsed file is only written to disk if it has changed since the last parse, thus avoiding the re-
compilation overhead of parsed files.

Since parsing is actually fairly fast compared to the ColdFusion compilation overhead, this
should substantially improve performance of development-circuit-load mode and may
also improve the performance of development-full-load mode as well.

contentVariable append
Ticket #290. Dynamic “do” now allows you to specify that the output of a fuseaction should be
appended to a content variable. This is a change from the Public Beta.

Debug Trace
The debug trace output now shows a stack trace for any exceptions that are caught by the core
files (rather than user-defined exception handlers). Additionally, if the core files have to rethrow
the exception because it is not handled by an error template, the debug trace is rendered before
the exception is thrown (previously the debug trace was suppressed). This makes it much easier
to debug exceptions that are not caught within the application.

Ticket #297. Debug trace output is now generated as CSS-based output instead of using inline
styles (so you can override the formatting). Thanks go to Nathan Strutz for this update!

errortemplates
Ticket #259. Historically, the errortemplates directory has always been part of the skeleton
application. This has led to everyone having a copy of this directory in every single Fusebox ap-
plication.

Fusebox 5.1 introduced the ability to override the Fusebox parameter errortemplatesPath
and use a mapped (or webroot-relative) path, there was no longer any reason to duplicate this
directory unless you wanted to modify the templates. Consequently, in Fusebox 5.5, the core files

Fusebox 5.5 Documentation

Page 15 of 18

contain a master copy of the errortemplates directory and the skeleton applications override
the errortemplatesPath Fusebox parameter, using /fusebox5/errortemplates/ instead
of the default local version.

If you want to customize the error templates, you should copy the core file directory into your
local application and modify the templates as you see fit. Then you can just change the Fusebox
parameter errortemplatesPath (or remove it to default to the local copy of the directory).

myFusebox.showDebug
Ticket #250. You can now suppress debug trace output on a per-request basis by setting
myFusebox.showDebug to false at any point during the request. If debugging is not enabled in
fusebox.xml (or via FUSEBOX_PARAMETERS in index.cfm or Application.cfc), this set-
ting has no effect.

myFusebox.getApplicationData()
Ticket #190. In Fusebox 5.1, to retrieve the Fusebox application's data structure you had to say:

myFusebox.getApplication().getApplicationData()

In Fusebox 5.5, you can use:
myFusebox.getApplicationData()

as a shortcut to access that structure.

myFusebox.getOriginalCircuit() / myFusebox.getOriginalFuseaction()
Ticket #227. Convenience methods added to return the original circuit object and the original
fuseaction object, mirroring the existing methods on myFusebox: getCurrentCircuit() and
getCurrentFuseaction().

myFusebox.variables()
Tickets #263 and #292. This is a synonym for the top-level variables scope in the Fusebox
application. Since in the Public Beta you could no longer <cfdump> either myFusebox or the
top-level variables scope, this has been changed to a method in the final release. You can now
<cfdump> myFusebox! Code based on the Public Beta that uses myFusebox.variables will
need to be updated.

This was previously accessible in Alpha builds through the getTopLevelVariablesScope()
method.

self parameter
Ticket #258. The default value for the Fusebox parameter self has changed from index.cfm
to the value of CGI.SCRIPT_NAME. This should not cause any issues but it is something to be
aware of if you are relying on the default value but access Fusebox through a URL other than
index.cfm.

SES URL processing
Ticket #252. Fusebox 5.1 introduced the ability for the <xfa> verb and the “myself” value to be
formatted for Search Engine Safe URLs, e.g., index.cfm/fuseaction/app.welcome but
Fusebox 5.1 did not process these URLs coming into the framework so you needed to add your

Fusebox 5.5 Documentation

Page 16 of 18

own home-brewed SES URL parser. Fusebox 5.5 will attempt to parse SES URLs coming into
the framework if the queryStringStart parameter is set to something other than the default
(“?”) in fusebox.xml or FUSEBOX_PARAMETERS.

Skeleton application reorganized
Ticket #268 (primarily). In Fusebox 5.1, the skeleton application had three circuits: controller
(app), model (m) and views (v). With the introduction of the no-XML variant, this was confusing
due to the implied circuit search order being controller, model and view (without the ‘s’). In or-
der to reduce that confusion and to provide a better example of how MVC applications work, the
skeleton application now has four circuits: controller (app), model/time (time), view/display
(display) and view/layout (layout). Note the renaming of the views directory to view. This means
that the no-XML variant can follow the structure exactly, using the same directory paths and the
same circuit aliases. This should make comparisons between the two techniques much easier.

Bugs Fixed
This section lists Fusebox 5.1 and Fusebox 5.5 Alpha/Beta bugs that are fixed in Fusebox 5.5,
ordered by ticket number.

194 - circuit= attribute on <include> verb now works correctly with implicit circuits.

197 - cleaned up skeleton application and moved layout prefuseaction into the controller.

198 - Element fusebox is undefined in a Java object - If your fusebox.xml or circuit.xml
file contained illegal XML, you now get the correct exception.

204 - circuit.dtd missing step attribute on loop verb - added.

205 - clear up inconsistencies in fusebox.dtd - DTD now correctly says everything is optional
(which it is, technically, even tho' a useful Fusebox application requires at least some elements be
present).

212 - double-hashed CSS colors in Fusebox debug report - removed spurious # symbols.

213 - circuit aliases can include dots (.) so fuseaction=foo.bar.action is legal (and the
circuit is foo.bar with a fuseaction of action). This is a first step to supporting drop-in mod-
ules in a future release.

232 - request timeout is automatically increased to ten minutes on framework load.

233/242 - ColdSpring get bean definition typo - custom lexicon fixed.

240 - sandbox security exceptions give a better error message.

243 - renamed fuseboxImplicitFuse.cfc to fuseboxImplicitFuseaction.cfc.

245 - plugin syntax errors give better error messages.

246 - fuseaction in URL should be trimmed - long-standing bug fixed so leading / trailing
whitespace in a fuseaction value is now ignored.

247 - added cf:savecontent lexicon.

Fusebox 5.5 Documentation

Page 17 of 18

257 - FUSEBOX_PARAMETERS did not all correctly override fusebox.xml parameter values.
This was a bug introduced in Fusebox 5.5 Alpha.

264 - FUSEBOX_APPLICATION_PATH did not work correctly with implicit circuits.

265 - Exceptions refer to Application.cfc location, not original source location.

268 - Reorganized skeleton applications’ circuit to reduce confusion when comparing traditional
and noxml versions.

269 - Fixed double application load after ColdFusion server is restarted.

270 - Worked around sandbox security disabling Java access by falling back to ColdFusion code.

286 - getCanonicalPath() now correctly handles Windows file paths.

291 - this scope in a traditional Application.cfc (that does not extend
fusebox5.Application) is now correctly passed into context of the application.

292 - myFusebox.variables is now a method - myFusebox.variables() - so you can
dump myFusebox and variables scope again.

293 - added guard code to dynamic do() to ensure it can’t be called until its environment is
setup correctly. It throws an exception if it is called inappropriately.

295 - Key Fusebox variables are now correctly exposed to a traditional Application.cfc (that
does not extend fusebox5.Application).

Known Issues
This section will contain any known issues with the current Fusebox 5.5 core files.

• If a Fusebox application is running and you change any of the SES URL parameters (the ones
whose names begin with queryString), the updated values are not reflected in the generated
myself parameter (or myFusebox.getMyself()) unless you force a full reload of the
framework (with fusebox.load=true) - even with development-full-load mode. This
is a “fact of life” because users are allowed to override the myself parameter directly and the
framework cannot tell whether it's calculated default should take precedence over the current
myself parameter value.

• There may still be some situations where an exception that occurs during startup is silently
“swallowed” resulting in a white screen of death. Enabling the Fusebox debug parameter will
show the “missing” exception.

Fusebox 5.5 Documentation

Page 18 of 18

